
FLOW
S A L E S F O R C E

W H I T E  P A P E R
This document provides advice on how to
use Salesforce flows and best practices for
new implementations or established
Salesforce organizations looking to formalize
standard Flow conventions. 

This document represents a compilation of
leading practices based on our experience
and research. We hope it helps your
organization be successful with Salesforce.

cldpartners.com

BEST PRACTICES

Last Revised Feb 2024



About Us
We help enterprises implement Salesforce and Certinia (FinancialForce)

solutions while optimizing their services business and financial operations. 

We offer PSQuote for professional services quoting and we design & implement

solutions for professional services automation. We help services businesses have

a comprehensive view of their quote to cash operations..   

Who We Are

Our consultants and our

leadership have years of

experience in implementing and

developing cutting-edge

technology that streamlines

business processes and improves

service to customers, employees

and vendors. 

Our Mission

What We Do

Salesforce, Certinia PSA and ERP

implementations are complicated.

Without advanced planning,

designing new processes, migrating

data, and training employees—the

system won’t perform the way you

want. CLD Partners guides you

through your business

transformation, giving you the value

you expect from a big investment. 

Our Vision

What drives us? Our genuine desire

to help our clients be successful. We

know that every client’s operations

are unique. That’s why we approach

each with a fresh perspective,

without assuming we already know

the solution. We listen. And then we

develop and deliver a solutions that

fits their enterprise and processes.

You might say we’re hopelessly

devoted to delivery.

By taking everything we have

learned over the years in

traditional custom application

development, and applying our

extensive knowledge and

experience with the Salesforce

platform, we repeatedly deliver

high-quality solutions tailored to

our customers needs while

providing all of the benefits that

the cloud paradigm has to offer.

2



Overview

When should you use flows?

With the evolution Salesforce Flows have had in the past several years, as
architects and admins it might be challenging to figure out the best way to
incorporate them into your implementations. 

This document provides advice on how to use Salesforce flows effectively rather
than when to use them. It provides guidance  for new Salesforce
implementations and can also be applied by established Salesforce
organizations looking to formalize standard Flow conventions and Flow
management best practices. 

This document provides guidelines in terms of number of Flows per object,
general naming conventions, error tracking, and more.  It’s well suited for
organizations with larger admin teams or teams that employ a sophisticated
approach to IT management. 

“If you have multiple people writing Flows in the org, we
find these best practices and guidelines really help
handoff from one team to another, or from Dev to QA.
Everybody involved knows "how to read" the Flow.”

-- Cecilia Chiderski, Solution Architect, CLD Partners

For help on deciding when to use a Flow vs
Apex, Salesforce has great documentation
on the Salesforce Architects page or you
can talk with our experts! We’re here to
help!

This document focuses on two
primary areas when working
with Flows:
 

Process-related (flow design,
Org standards, naming
conventions) 

Technical-related advice
(such as don't hard code IDs,
when to use subflows, error
handling, and more) 

3

https://architect.salesforce.com/decision-guides/trigger-automation


Ta
b

le
 o

f C
on

te
n

ts Overview ..................................................................................................................................... 3
Flow Design Strategy ....................................................................................................... 5 
       One Flow per object per event, or multiple Flows? ........................ 5
       When to create a new flow? .............................................................................. 5
General Design Guidelines .......................................................................................... 7
Naming Conventions ....................................................................................................... 9
      Naming Flows .............................................................................................................. 10
      Naming Flow Elements ........................................................................................ 11
Using Subflows .................................................................................................................... 13
Flow Context ......................................................................................................................... 13
Testing Flows ........................................................................................................................ 14
Error Handling ..................................................................................................................... 16
Checklist of 20 Flow Tips ............................................................................................. 17

4



Flow Design Strategy

One Flow Per Object Per Event, or Multiple Flows?
Early on, Salesforce advised to have one Flow per object per event when it comes to
Record-Triggered Flows. After retiring workflow rules and replacing them with Flows,
it became very apparent that “one Flow per object per event” was not compatible
with the guideline of defining good entry criteria to minimize execution.

“One Flow per object per event” is only achievable these days in small orgs with
minimal automation, or if the org is Essentials or Professional. In this last case, you can
have up to 5 active Flows per type. (Read more about Salesforce Flow limits.)

On Enterprise editions, you should plan for scalability, and recognize that one Flow per
object per event might not be reasonable. This is why a Flow design strategy is key,
particularly when working with record-triggered Flows, to ensure sustainability,
scalability, and simplicity for future troubleshooting.

It's worth noting that the discussion about the number of Flows per object is relevant
only on Record-Triggered-Flows. Other Flow types are typically standalone unless they
are expanding and extending or modifying an existing one.

When to Create a New Flow?
There is a technical limitation to the concept of one Record-Triggered Flow per object:
a Record-Triggered-Flow can run in a before context OR in an After context, not both.
At the same time, they can only run on Create, Update, Create or Update, or Delete.
This means that at least, you need three Flows:

1) Before create, before update
2) After create, after update
3) Before delete

This structure should be the guiding principle. However, this will evolve as the
business processes that Flow solves grows. Deciding to create a new Flow or reuse an
existing one is challenging and so far there is no magic answer. As a starting point,
use the following decision tree to get started.

5

https://help.salesforce.com/s/articleView?id=sf.flow_considerations_limit.htm&type=5


Flow Creation Decision Tree

The diagram above should be used as a starting point. It’s important to note business
analysis and Flow design are key in the decision process. Keep these best practices in
mind while you design the perfect flow.

1) If the Flow that you are adding is a very complex and standalone process → call
a Subflow if possible or create a new Flow.

2) If the existing Flow is already in the Org - consider if it is properly written. If not,
create a new Flow following our recommended standards in this doc, OR talk
with your team about revising the existing Flow.

3) If you need to change the Flow name for an existing Flow to expand its scope,
be sure to share with your team. It might have training or documentation
implications.

4) If you are not sure, contact the lead Salesforce admin to discuss your use case.

6



General Design Guidelines
1. Design your Flow before you start building. Have a clear understanding of the

desired outcome, the information you need, where it is coming from, and a
general idea of the actions to perform.

2. Always fill in the Flow description field. Clearly define the problem that the Flow
is solving, the objects that are somehow involved, and if relevant, how it is
called (e.g. a button on a layout).

○ If possible, include a brief description of the related business process.
Always ask yourself “if I’m seeing this Flow for the first time, what would
be relevant to know?”. Whoever is coming after you will be thankful!

○ If the Flows have descriptions, a quick and easy way to see them all is
creating a Flow list view, comprising the Flow name and description and
applying any relevant filter.

A simple Flow list viewmakes it easy to see Flow descriptions.

3. Use Fast Field Update any time you can. This is the equivalent to a “before”
context in Apex, and the same rules apply. You can use Fast Field Update if:

○ The Flow is updating only the record that triggered the Flow.

○ The Flow doesn’t contain any Create Records, Action, Delete Records, or
Subflow elements.

4. Same as Apex, Flows have governor limits. Limit the number of queries and
DML operations performed within the Flow to avoid hitting them, and never
perform a DML inside of a loop.

5. To avoid a mixed DML error during the execution of the Flow, if you are
inserting/updating setup and non-setup objects in the same transaction, add
an Asynchronous path to the flow. Then, perform the DML of the setup object
on the "Immediately" branch, and the DML for the non-setup object in the
Asynchronous branch.

6. Always use Assignment and not Update on a Fast Field Updates Flow.

7



7. Never use hard-coded IDs. If you need an ID in a Flow, use a Get Records
element to retrieve it instead.

○ This includes getting the record type ID: run Get Records on the Record
Type object.

○ If you see hard-coded IDs in a Flow, talk to the customer about it. Sooner
or later it is going to cause issues.

8. Refine when the Flow runs using entry criteria. As the number of Flows grows,
this reduces the number of times a Flow is called, and leads to performance
improvements during Flow execution.

9. Include a bypass in all your Flows to disable them in bulk if needed. This is
especially useful during data migration or sandbox seeding.

○ If the org already has the CLD trigger framework in place, add a field on
the existing custom setting “Trigger Control Settings” called “Deactivate
Flows”. Then on every Flow include the custom setting as part of your
entry criteria. Two options to do this:

■ Add the custom setting in a formula, as part of the Flow entry
criteria. For example, the following Flow on the Contact object will
only run if the Custom Setting field to “Disable Flows" is
unchecked, and the Is Resource field is checked.

■ Add a decision node at the very beginning of the Flow that checks
for the custom setting value.

○ If the org doesn’t have the CLD trigger framework in place, use your best
judgment to determine where to include this circuit breaker
functionality. It can be a custom setting, custommetadata, or a custom
permission.

8



■ Custom settings and custom permissions are the preferred
approach because they allow for easily narrowing down the users
to which the functionality applies.

10. Check for null or empty results in Decision elements before acting on a set of
records.

11. Control the order of execution: Navigate to the Flow Trigger Explorer by clicking
the Flow Trigger Explorer button on the Flows page. By object and context,
define the order of execution of the Flows.

12. Be careful with complex formula variables. Per the Record-Triggered
Automation Decision Guide, “Flow’s formula engine sporadically exhibits poor
performance when resolving extremely complex formulas. This issue is
exacerbated in batch use cases because formulas are currently both compiled
and resolved serially during runtime”.

13. Reactivity in Flows is supported with API version 57.0 or later. You can easily
change the API version on an old Flow by saving it as a new version and editing
the API on the Flow properties.

14. Always check with the team or end customer to see if they have any Flow
guidelines that should be followed. Don’t be afraid to ask challenging questions
if you read something that seems counterintuitive or unwise..

Naming Conventions
Ideally, your entire org should follow a consistent nomenclature. Names should be
concise and immediately give an insight into the Flow's functionality. (Note: the
following naming conventions are referenced in this section.)

camelCase

● Capital letters can only appear
at the start of the second word
(like someVariable).

● No dots, underscores,
numbers, dashes, or any other
special characters are allowed
within the word

PascalCase

● A compound word that uses
capital letters to differentiate
words. Includes the first letter
in the first word.

9

https://architect.salesforce.com/design/decision-guides/trigger-automation/#Use_Case_Considerations
https://architect.salesforce.com/design/decision-guides/trigger-automation/#Use_Case_Considerations


Naming Flows

Flow Type Name Guideline Example

Record
Triggered

{Object
Name}-{AbbreviatedEvent}-{A
ction in plain words}

Note: If relevant for the Org,
prefix the record triggered Flows
with “PSA” or “FFA” for the
Certinia managed packaged
objects.

Opportunity-BI-Create Projects,
ProjectAI-Create Milestones,
Contact-BI-Set fields on PSA
Resources

Screen* {Object Name}-SCR-{Action in
plain words}

Resource Request-SCR-Create
New RR,
Opportunity-SCR-Initiate
Change Order

Scheduled {Object Name}-SCH- {Action
in plain words}

Project-SCH-Create monthly
milestones

Platform Event {Platform Event}-EVT-{Action
in plain words}

Integration Log-EVT-Send
notification

Orchestration {Object
Name}{AbbreviatedEvent**}-O
RCH-{Action in plain words}

Resource
RequestAI-ORCH-Approval and
interview process

Subflow {Object Name}-SUB-{Action in
plain words}

Resource
Request-SUB-Populate Skill
Requests

(*) Screen Flows are more versatile because they might not be related to a particular object. In
these cases, use a reasonable name that clearly identifies what the Flow is doing.

(**) Abbreviated Event can be as follows:
- Before Insert → BI
- Before Update → BU
- After Insert → AI
- After Update → AU
- Before Delete → BD

Note: Some organizations prefer to call the “insert” event “create” instead. In this case, replace
“I” by “C”.

10



Naming Flow Elements
We referenced the SFXD wiki on naming conventions as a baseline for creating our
conventions. Our list represents a simplified version designed for ease of use.

When it comes to Flow elements, it is important to have a naming convention so the
screen is easier to navigate. However, it is critical to follow a pattern for the API name
to facilitate the development andmaintenance of the Flow.

Component
Type

API Guideline API Example Name Example

DML - Query Start with Get for any
Objects, or Fetch for
CMTD or custom
settings

Get_Projects,
Fetch_DeactivateFlo
ws

Get Projects,
Fetch
DeactivateFlows

DML -
Update

Start with Update. If is
updating a list, use
UpdateList

Update_ActiveAssign
ment,
UpdateList_ActiveAss
ignments

Update
ActiveAssignmen
t, UpdateList
ActiveAssignmen
ts

DML - Insert Start with Insert. If is
inserting a list, use
InsertList

Insert_Milestone,
InsertList_Milestones

Insert Milestone,
InsertList
Milestones

DML - Delete Start with Del. If is
deleting a list, use
DelList

Del_ResourceReques
t,
DelList_ResourceReq
uests

Del
ResourceRequest
, DelList
ResourceRequest
s

Action - Apex Start with APEX APEX_CreateProjects APEX
CreateProjects

Action -
Subflow

Start with SUB SUB_AddSkillsToRRs SUBFLOW
AddSkillsToRRs

Action -
Email Alert

Start with EMAIL EMAIL_NewAssignm
entToAssignee

EMAIL
NewAssignmentT
oAssignee

Screen Start with SC01, +1 for
each new screen

SC01_CreateResource
Requests

CreateResourceR
equests

11

https://wiki.sfxd.org/books/best-practices/page/flow-naming-conventions


Component
Type

API Guideline API Example Name Example

Screen
Element

Start with the screen
number that it belongs
to

SC01_NumberOfMon
ths

NumberOfMonth
s

Resource
(variable,
constant,
formula, text
template)

Start with the variable
type, and use camelCase

num_numberOfMiles
tones,
txt_errorMessageTem
plate

numberOfMilesto
nes,
errorMessageTem
plate

Decision
Element

Start with Is, Check or
Can, or similar

IsProjectBillable,
CheckRecordType,
CanProjectBeClosed

Is Project
Billable?, Check
Record Type, Can
Project Be
Closed?

Decision
Outcome

Start with the Decision
Element and add _Yes,
_No, or _{PascalCase}
Always Rename the
default outcome

IsProjectBillable_Yes,
IsProjectBillable_No,
CheckRecordType_Is
Resource

Yes, No, Is
Resource

Assignment Start with:
SET: variable updates.
ASSIGN: variable
initialization, or updates
on Non-Object variables.
ADD: add elements to
Collections.
REMOVE: remove
elements from
Collections.
CALC: mathematical
assignment or complex
collection manipulation.

SET_ProjectValues,
ADD_SelectedRoles

SET
ProjectValues,
ADD
SelectedRoles

Loop Start with LOOP LOOP_ActiveProjects LOOP
ActiveProjects

12



Using Subflows
Think about Subflows as helper classes in Apex. They are a good way to standardize
operations, minimize the number of Flows in the org, and simplify maintenance.

Note: Subflows are not available in record-triggered before-save Flows (yet).

Here are some classic use cases for when you should consider a subflow:

● Re-use: If you’re doing the same thing in your Flowmultiple times, or doing the
same thing you did with another Flow, call a Subflow to do it.

● Complex processes/subprocesses: If your Flow involves multiple processes and
branching logic, create a main Flow that launches other secondary Flows. For
example, on a Flow that creates projects, a Subflow can be called to create
resource requests. The same Subflow can be called from an Opportunity to
create pipeline Resource Requests!

● Your Flow is hard to read: That’s a sign that it got too big, or is poorly organized.
Perhaps a Subflow to break it down into sub processes might help.

● Handle complex permissions scenarios: Subflows do not inherit the
permissions from the calling Flow. For example on a Screen Flow that is
running in user context, you need to update an object that the user doesn’t
have Edit access to. By using a subflow with system context permissions, you’re
able to temporarily grant Edit access to that user.

Flow Context
Context matters! If a Flow is running in user context, the running user of a Flow is the
one that launches it. Permissions on the user’s profile including object and field level
access will affect the way the Flow runs. This includes sharing rules, role hierarchies,
etc.

Some types of Flows allow for determining the context from the following options:

● User or system context: The context is determined by how the Flow is launched.

● System Context with Sharing: The Flow respects org-wide default settings, role
hierarchies, sharing rules, manual sharing, teams, and territories—but it doesn’t
respect object permissions, field-level access, or other permissions of the
running user.

● System Context without Sharing: The Flow can access all data.

13



Record triggered Flows always run in system context without sharing. Click here to
learn how to change the flow context.

The running context on a Flow can be defined in the Flow settings, “How to Run the
Flow” drop down.

There are a number of limitations when it comes to context and Flow/Apex/Lightning
component interactions. In order to avoid transforming this document into a training
guide, please refer to this article for details.

Testing Flows
One of the appeals of Flows is that they don’t require test coverage in order to get
deployed. Flows need to be thoroughly tested, however. Always test your Flow as the
user that will be running it, since permissions might impact the processing.

Flow debug allows for testing as other users, as long as the process automation
setting is properly configured (Automate This - Discover Tips and Best Practices for
Record Triggered Flows):

● In Setup, on the Process Automation Settings page, there’s a setting called “Let
admins debug flows as other users”.

○ Make sure that this setting is checked in order to run a Flow as another
user in the Flow Debug window.

14

https://help.salesforce.com/s/articleView?id=sf.flow_distribute_system_mode.htm&type=5
https://help.salesforce.com/s/articleView?id=sf.flow_distribute_system_mode.htm&type=5
https://help.salesforce.com/s/articleView?id=sf.flow_distribute_context.htm&type=5
https://admin.salesforce.com/blog/2022/automate-this-discover-tips-and-best-practices-for-record-triggered-flows
https://admin.salesforce.com/blog/2022/automate-this-discover-tips-and-best-practices-for-record-triggered-flows


● In the Debug Flow screen, make sure that “Run flow as another user” is
checked, and select the running user:

When you run the debug, you see what they would see and get details about
any errors they would receive.

15



Error Handling
Flows are a declarative way to execute Apex. As such, they can (and will) fail. A fault
connection in Flows allows for handling errors and exceptions. A recommended
practice is to always include a fault action after Data and Action elements.

A fault action can include an email notification, chatter post, or display an error
message to the user. In order to capture the error, use the {!$Flow.FaultMessage}
variable. This can be exposed in a screen component, and included as text on a text
template that is then part of a send email action.

Note that the screen element can be used to show an error message only when
creating a screen Flow. For other Flow types (record triggered, schedule triggered,
non-triggered Flows) you can post to chatter, send an email or create a new record to
log error details.

If your org has an error log object, ideally the Flow fault should create a new entry in
the error log.

16



Checklist of 20 Flow Tips
If you’re short on time, here’s a summarized list of things to consider to design and
use Flows in your Salesforce org.

1. For Essentials or Professional orgs, use one Flow per object per type.

2. On Enterprise Orgs, use common judgment to determine how to group Flows.

3. Design your Flow before you start building.

4. Document your Flow by providing a description.

5. Use Fast Field Update any time you can.

6. Watch out for governor limits.

7. Use an asynchronous path if inserting/updating setup and non-setup objects
on the same transaction.

8. Use Assignment and not Update on Fast Field Updates Flow.

9. Never hard-code IDs.

10. Define good entry criteria, if possible.

11. Add a bypass Flowmechanism in all Flows.

12. Check for null or empty results in Decision elements.

13. Control the order of execution using Flow Trigger Explorer.

14. Avoid complex formula variables.

15. Check with the customer if they have Flow guidelines in place.

16. Follow naming guidelines and conventions to make Flows more standardized
and readable.

17. Use Subflows for repetitive/reusable processes.

18. Carefully define Flow Context.

19. Test your Flow as the running user.

20. Have an error handling strategy to manage errors and exceptions.

21. Have fun!

17



We hope this document helps your 
organization operate efficiently and
effectively with a well-run Salesforce
organization. 

Take time to review your and manage
your Salesforce configuration to maintain
data integrity. Don’t have time? Not sure
where to start? Give us a call. 

cldpartners.com

571.497.5112

T H A N K  Y O U

W E  C A N  H E L P .

tel:571-497-5112

