
FLOW
S A L E S F O R C E

W H I T E  P A P E R

Practical standards for naming
conventions, design patterns, error
handling, and organizational strategies
that ensure your automation remains
sustainable as your team and
requirements grow. 

cldpartners.com

BEST PRACTICES

Last Revised June 2025



Overview

When should you use flows?

With the evolution Salesforce Flows have had in the past several years, as
architects and admins it might be challenging to figure out the best way to
incorporate them into your implementations.

This document is intended to address how to use flows rather than when to use
them. It provides guidance for new Salesforce implementations and can also be
applied by established Salesforce organizations looking to apply standard Flow
conventions.

This document provides guidelines in terms of number of Flows per object,
general naming conventions, error tracking, and more. It’s well suited for
organizations with larger admin teams or teams that employ a sophisticated
approach to IT management.

“If you have multiple people writing Flows in the org, we
find these best practices and guidelines really help
handoff from one team to another, or from Dev to QA.
Everybody involved knows ‘how to read’ the Flow.”

-- Cecilia Chiderski, Solution Architect, CLD Partners

For help on deciding when to use a Flow vs
Apex, Salesforce has great documentation
on the Salesforce Architects page or you
can talk with our experts! We’re here to
help!

This document focuses on two
primary areas when working
with Flows:
 

Process-related (flow design,
Org standards, naming
conventions) 

Technical-related advice
(such as don't hard code IDs,
when to use subflows, error
handling, and more) 

2

https://architect.salesforce.com/decision-guides/trigger-automation


Ta
b

le
 o

f C
on

te
n

ts Overview ..................................................................................................................................... 2
Flow Design Strategy ....................................................................................................... 4 
       One Flow per object per event, or multiple Flows? ........................ 4
       When to create a new flow? .............................................................................. 4
General Design Guidelines .......................................................................................... 6
Naming Conventions ....................................................................................................... 8
      Naming Flows ................................................................................................................ 9
      Naming Flow Elements ........................................................................................ 10
Using Subflows .................................................................................................................... 12
Flow Context ......................................................................................................................... 13
Testing Flows ........................................................................................................................ 14
Error Handling ..................................................................................................................... 16
Checklist of 20-ish Flow Tips .................................................................................... 17

3



Flow Design Strategy 

One Flow Per Object Per Event, or Multiple Flows? 
Early on, Salesforce advised to have one Flow per object per event when it comes to 
Record-Triggered Flows. After retiring workflow rules and replacing them with Flows, 
it became very apparent that “one Flow per object per event” was not compatible with 
the guideline of defining good entry criteria to minimize execution.   
 
“One Flow per object per event” is only achievable these days in small orgs with 
minimal automation, or if the org is Essentials or Professional. In this last case, you can 
have up to 5 active Flows per type. (Read more about Salesforce Flow limits.)   
 
On Enterprise editions, you should plan for scalability, and recognize that one Flow per 
object per event might not be reasonable. This is why a Flow design strategy is key, 
particularly when working with record-triggered Flows, to ensure sustainability, 
scalability, and simplicity for future troubleshooting. 
 
It's worth noting that the discussion about the number of Flows per object is relevant 
only on Record-Triggered-Flows. Other Flow types are typically standalone unless they 
are expanding and extending or modifying an existing one. 

When to Create a New Flow? 
There is a technical limitation to the concept of one Record-Triggered Flow per object: 
a Record-Triggered-Flow can run in a before context OR in an After context, not both. 
At the same time, they can only run on Create, Update, Create or Update, or Delete. 
This means that at least, you need three Flows:  
 

1) Before create, before update 
2) After create, after update 
3) Before delete 

 
This structure should be the guiding principle. However, this will evolve as the 
business processes that Flow solves grows. Deciding to create a new Flow or reuse an 
existing one is challenging and so far there is no magic answer. As a starting point, 
use the following decision tree to get started. 
 

4 

https://help.salesforce.com/s/articleView?id=sf.flow_considerations_limit.htm&type=5


 
Flow Creation Decision Tree 

 
The diagram above should be used as a starting point. It’s important to note business 
analysis and Flow design are key in the decision process. Keep these best practices in 
mind while you design the perfect flow.  

1) If the Flow that you are adding is a very complex and standalone process → call 
a Subflow if possible or create a new Flow. 

2) If the existing Flow is already in the Org - consider if it is properly written. If not, 
create a new Flow following our recommended standards in this doc, OR talk 
with your team about revising  the existing Flow.  

3) If you need to change the Flow name for an existing Flow to expand its scope, 
be sure to share with your team. It might have training or documentation 
implications. 

4) If you are not sure, contact the lead Salesforce admin  to discuss your use case. 

5 



General Design Guidelines 
1. Design your Flow before you start building. Have a clear understanding of the 

desired outcome, the information you need, where it is coming from, and a 
general idea of the actions to perform.  

2. Always fill in the Flow description field. Clearly define the problem that the Flow 
is solving, the objects that are somehow involved, and if relevant, how it is called 
(e.g. a button on a layout).  

○ If possible, include a brief description of the related business process. 
Always ask yourself “if I’m seeing this Flow for the first time, what would 
be relevant to know?”. Whoever is coming after you will be thankful!  

○ If the Flows have descriptions, a quick and easy way to see them all is 
creating a Flow list view, comprising the Flow name and description and 
applying any relevant filter.  

 
A simple Flow list view makes it easy to see Flow descriptions.  

 
○ On the Flow elements that allow for Description, always provide a brief 

explanation of what the element is doing. Not only it helps with 
documentation, but is also supports your Agentforce Flow Actions. 

3. Use Fast Field Update any time you can. This is the equivalent to a “before” 
context in Apex, and the same rules apply. You can use Fast Field Update if:  

○ The Flow is updating only the record that triggered the Flow. 

○ The Flow doesn’t contain any Create Records, Action, Delete Records, or 
Subflow elements.  

4. Same as Apex, Flows have governor limits. Limit the number of queries and 
DML operations performed within the Flow to avoid hitting them, and never 
perform a DML inside of a loop.  

5. To avoid a mixed DML error during the execution of the Flow, if you are 
inserting/updating setup and non-setup objects in the same transaction, add 
an Asynchronous path to the flow. Then, perform the DML of the setup object 

6 



on the "Immediately" branch, and the DML for the non-setup object in the 
Asynchronous branch. 

6. Always use Assignment and not Update on a Fast Field Updates Flow.  

7. Never use hard-coded IDs. If you need an ID in a Flow, use a Get Records 
element to retrieve it instead.  

○ This includes getting the record type ID: run Get Records on the Record 
Type object. 

○ If you see hard-coded IDs in a Flow, talk to the customer about it. Sooner 
or later it is going to cause issues.  

8. Refine when the Flow runs using entry criteria. As the number of Flows grows, 
this reduces the number of times a Flow is called, and leads to performance 
improvements during Flow execution. 

9. Include a bypass (circuit breaker) in all your record triggered Flows to disable 
them in bulk if needed. This is especially useful during a data migration or 
sandbox seeding.  

○ If the org already has the CLD trigger framework in place, add a field on 
the existing custom setting “Trigger Control Settings” called “Deactivate 
Flows”. Then on every Flow include the custom setting as part of your 
entry criteria. Two options to do this: 

■ Add the custom setting in a formula, as part of the Flow entry 
criteria. For example, the following Flow on the Contact object will 
only run if the Custom Setting field to “Disable Flows" is 
unchecked, and the Is Resource field is checked.  

 
■ Add a decision node at the very beginning of the Flow that checks 

for the custom setting value.  

7 



○ If the org doesn’t have the CLD trigger framework in place, use your best 
judgment to determine where to include this circuit breaker 
functionality. It can be a custom setting, custom metadata, or a custom 
permission.  

■ Custom settings and custom permissions are the preferred 
approach because they allow for easily narrowing down the users 
to which the functionality applies.  

10. Check for null or empty results in Decision elements before acting on a set of 
records. 

11. Control the order of execution: Navigate to the Flow Trigger Explorer by clicking 
the Flow Trigger Explorer button on the Flows page. By object and context, 
define the order of execution of the Flows.  

12. Be careful with complex formula variables. Per the Record-Triggered 
Automation Decision Guide, “Flow’s formula engine sporadically exhibits poor 
performance when resolving extremely complex formulas. This issue is 
exacerbated in batch use cases because formulas are currently both compiled 
and resolved serially during runtime”. 

13. Reactivity in Flows is supported with API version 57.0 or later. You can easily 
change the API version on an old Flow by saving it as a new version and editing 
the API on the Flow properties.  

14. Use a Flow Action Button or a Screen Action on Screen Flows to trigger actions 
from a Screen Flow. It’s a great way to enhance user experience! 

15. Enhance the Screen Flow UI with pictures (static resources), using icons on 
choice resources, adjusting the width of the components, or using HTML 
markups.  

16. Always check with the team or end customer to see if they have any Flow 
guidelines that should be followed. Don’t be afraid to ask challenging questions 
if you read something that seems counterintuitive or unwise. 

Naming Conventions 
Ideally, your entire org should follow a consistent nomenclature. Names should be 
concise and immediately give an insight into the Flow's functionality. (Note: the 
following naming conventions are referenced in this section.) 
 

8 

https://architect.salesforce.com/design/decision-guides/trigger-automation/#Use_Case_Considerations
https://architect.salesforce.com/design/decision-guides/trigger-automation/#Use_Case_Considerations


camelCase 
 

● Capital letters can only appear 
at the start of the second word 
(like someVariable). 

● No dots, underscores, 
numbers, dashes, or any other 
special characters are allowed 
within the word  
 

PascalCase 
 

● A compound word that uses 
capital letters to differentiate 
words. Includes the first letter 
in the first word. 

Naming Flows  
 

Flow Type Name Guideline Example 

Record 
Triggered 
Flow 

{Object Name}-{AbbreviatedEvent}-{Action 
in Plain Words} 
 
Note: If relevant for the Org, prefix the record 
triggered Flows with “PSA” or “FFA” for the 
Certinia managed packaged objects, “PSQ” for 
PSQuote managed packaged objects, etc. 

Opportunity-AI-Create 
Projects, Project-AI-Create 
Milestones, Contact-BI-Set 
Default Fields 

Autolaunched 
Flow 
(no-subflow) 

{Object Name}-{Action in Plain Words} Opportunity-Check On Close 
Won, Milestone-Validate 
Billing Fields 

Subflow {Object Name}-SFL-{Action in Plain Words} Resource 
Request-SFL-Populate Skill 
Requests 

Screen (all)* {Object Name}-SCR-{Action in Plain Words} Resource Request-SCR-Create 
New RR, 
Opportunity-SCR-Initiate 
Change Order 

Scheduled {Object Name}-SCH- {Action in Plain 
Words} 

Project-SCH-Create Monthly 
Milestones  

Platform 
Event 

{Platform Event}-EVT-{Action in Plain 
Words} 

Integration Log-EVT-Send 
Notification 

9 



Flow Type Name Guideline Example 

Orchestration* {Object 
Name}-{AbbreviatedEvent**}-ORCH-{Action 
in Plain Words} 
 
Note: AbbreviatedEvent does not apply to 
Autolaunched Flow Approval Processes or 
Autolaunched Orchestrations. 

Resource 
Request-AIAU-ORCH-Staffing 
and Interview Process, 
Quote-ORCH-Approval 
Process 

Evaluation {Object Name}-EVAL-{Action in Plain 
Words} 

Quote-EVAL-Check Level 1 
Approvals 

Template-Trig
gered Prompt 
Flow* 

{Object Name}-PRO-{Action in Plain 
Words} 

Opportunity-PRO-Get All 
Open Opportunities for 
Account 

 
(*) Screen Flows, non-Approval Orchestrations and Template-Triggered Prompt Flows are more 
versatile because they might not be related to a particular object. In these cases, use a 
reasonable name that clearly identifies what the Flow is doing. 
 
(**) Abbreviated Event can be as follows: 

- Before Insert → BI 
- Before Update → BU 
- After Insert → AI 
- After Update → AU 
- Before Delete → BD 

Note: Some organizations prefer to call the “insert” event “create” instead. In this case, replace 
“I” by “C”.  

Naming Flow Elements 
We referenced the SFXD wiki on naming conventions as a baseline for creating our 
conventions. Our list represents a simplified version designed for ease of use.  
 
When it comes to Flow elements, it is important to have a naming convention so the 
screen is easier to navigate. However, it is critical to follow a pattern for the API name 
to facilitate the development and maintenance of the Flow.  
 

Component 
Type 

API Guideline API Example Name Example 

DML - Query Start with Get for any 
Objects, or Fetch for 

Get_Projects, 
Fetch_DeactivateFlo
ws 

Get Projects, 
Fetch Deactivate 
Flows 

10 

https://wiki.sfxd.org/books/best-practices/page/flow-naming-conventions


Component 
Type 

API Guideline API Example Name Example 

CMTD or custom 
settings 

DML - 
Update 

Start with Update. If is 
updating a list, use 
UpdateList 

Update_ActiveAssign
ment, 
UpdateList_ActiveAss
ignments 

Update Active 
Assignment, 
UpdateList Active 
Assignments 

DML - Insert Start with Insert. If is 
inserting a list, use 
InsertList 

Insert_Milestone, 
InsertList_Milestones 

Insert Milestone, 
InsertList 
Milestones 

DML - Delete Start with Del. If is 
deleting a list, use 
DelList 

Del_ResourceReques
t, 
DelList_ResourceReq
uests 

Del Resource 
Request, DelList 
Resource 
Requests 

Action - Apex Start with APEX APEX_CreateProjects APEX Create 
Projects 

Action - 
Subflow 

Start with SUB SUB_AddSkillsToRRs SUBFLOW Add 
Skills To RRs 

Action - 
Email Alert 

Start with EMAIL EMAIL_NewAssignm
entToAssignee 

EMAIL New 
Assignment To 
Assignee 

Screen Start with SC01, +1 for 
each new screen 

SC01_CreateResource
Requests 

Create Resource 
Requests 

Screen 
Element 

Start with the screen 
number that it belongs 
to 

SC01_NumberOfMon
ths 

Number Of 
Months 

Resource 
(variable, 
constant, 
formula, text 
template) 

Start with the variable 
type, and use 
camelCase.  
Optionally, start with var, 
and use camelCase. 

num_numberOfMiles
tones, 
var_numberOfMilesto
nes, 
txt_errorMessageTem
plate 

Number Of 
Milestones, Error 
Message 
Template 

11 



Component 
Type 

API Guideline API Example Name Example 

Decision 
Element 

Start with Is, Check or 
Can, or similar  

IsProjectBillable, 
CheckRecordType, 
CanProjectBeClosed  

Is Project Billable?, 
Check Record 
Type, Can Project 
Be Closed?  

Decision 
Outcome 

Start with the Decision 
Element and add _Yes, 
_No, or _{PascalCase}  
Always Rename the 
default outcome 

IsProjectBillable_Yes, 
IsProjectBillable_No, 
CheckRecordType_Is
Resource 

Yes, No, Is 
Resource 

Assignment Start with: 
SET: variable updates. 
ASSIGN: variable 
initialization, or updates 
on Non-Object variables. 
ADD: add elements to 
Collections. 
REMOVE: remove 
elements from 
Collections. 
CALC: mathematical 
assignment or complex 
collection manipulation. 

SET_ProjectValues, 
ADD_SelectedRoles 

SET Project 
Values, ADD 
Selected Roles 

Loop Start with LOOP LOOP_ActiveProjects LOOP Active 
Projects 

Transform Start with a relevant 
action, i.e. GET, SET, 
CALC, ADD 

CALC_AggregateTotal
Cost, 
GET_AllOpptyIds 

CALC Aggregate 
Total Cost, GET all 
Oppty Ids 

Using Subflows 
Think about Subflows as helper classes in Apex. They are a good way to standardize 
operations, minimize the number of Flows in the org, and simplify maintenance.  
 
Note: Subflows are not available in record-triggered before-save Flows (yet).  
 
Here are some classic use cases for when you should consider a subflow: 

12 



 
● Re-use: If you’re doing the same thing in your Flow multiple times, or doing the 

same thing you did with another Flow, call a Subflow to do it.  

● Complex processes/subprocesses: If your Flow involves multiple processes and 
branching logic, create a main Flow that launches other secondary Flows. For 
example, on a Flow that creates projects, a Subflow can be called to create 
resource requests. The same Subflow can be called from an Opportunity to 
create pipeline Resource Requests!  

● Your Flow is hard to read: That’s a sign that it got too big, or is poorly organized. 
Perhaps a Subflow to break it down into sub processes might help.  

● Handle complex permissions scenarios: Subflows do not inherit the 
permissions from the calling Flow. For example on a Screen Flow that is 
running in user context, you need to update an object that the user doesn’t 
have Edit access to. By using a subflow with system context permissions, you’re 
able to temporarily grant Edit access to that user.  

Flow Context 
Context matters! If a Flow is running in user context, the running user of a Flow is the 
one that launches it. Permissions on the user’s profile including object and field level 
access will affect the way the Flow runs. This includes sharing rules, role hierarchies, 
etc.  
 
Some types of Flows allow for determining the context from the following options: 
 

● User or system context: The context is determined by how the Flow is launched. 

● System Context with Sharing: The Flow respects org-wide default settings, role 
hierarchies, sharing rules, manual sharing, teams, and territories—but it doesn’t 
respect object permissions, field-level access, or other permissions of the 
running user. 

● System Context without Sharing: The Flow can access all data. 
 
Record triggered Flows always run in system context without sharing. Click here to 
learn how to change the flow context. 
 
The running context on a Flow can be defined in the Flow settings, “How to Run the 
Flow” drop down. 
 

13 

https://help.salesforce.com/s/articleView?id=sf.flow_distribute_system_mode.htm&type=5
https://help.salesforce.com/s/articleView?id=sf.flow_distribute_system_mode.htm&type=5


   
 

There are a number of limitations when it comes to context and Flow/Apex/Lightning 
component interactions. In order to avoid transforming this document into a training 
guide, please refer to this article for details.  

Testing Flows 
One of the appeals of Flows is that they don’t require test coverage in order to get 
deployed. Flows need to be thoroughly tested, however. Always test your Flow as the 
user that will be running it, since permissions might impact the processing. 
 
Flow debug allows for testing as other users, as long as the process automation 
setting is properly configured (Automate This - Discover Tips and Best Practices for 
Record Triggered Flows):   
 

● In Setup, on the Process Automation Settings page, there’s a setting called “Let 
admins debug flows as other users”.  

○ Make sure that this setting is checked in order to run a Flow as another 
user in the Flow Debug window. 

 

14 

https://help.salesforce.com/s/articleView?id=sf.flow_distribute_context.htm&type=5
https://admin.salesforce.com/blog/2022/automate-this-discover-tips-and-best-practices-for-record-triggered-flows
https://admin.salesforce.com/blog/2022/automate-this-discover-tips-and-best-practices-for-record-triggered-flows


 
 

● In the Debug Flow screen, make sure that “Run flow as another user” is 
checked, and select the running user:  

 
 
When you run the debug, you see what they would see and get details about 
any errors they would receive. 
 

15 



Also, on Record Triggered Flows you can create Test records and assertions to 
make sure that all the use cases are properly covered. See Salesforce’s help for 
more information about testing flows.  

Error Handling 
Flows are a declarative way to execute Apex. As such, they can (and will) fail. A fault 
connection in Flows allows for handling errors and exceptions. A recommended 
practice is to always include a fault action after Data and Action elements.  
 
A fault action can include an email notification, chatter post, or display an error 
message to the user. In order to capture the error, use the {!$Flow.FaultMessage} 
variable. This can be exposed in a screen component, and included as text on a text 
template that is then part of a send email action.  
 
Note that the screen element can be used to show an error message only when 
creating a screen Flow. For other Flow types (record triggered, schedule triggered, 
non-triggered Flows) you can post to Chatter, send an email, send a Slack message or 
create a new record to log error details. 
 
If your org has an error log object, ideally the Flow fault should create a new entry in 
the error log.  
 
 
 

 

16 

https://help.salesforce.com/s/articleView?id=platform.flow_concepts_testing.htm&type=5


Checklist of 20-ish Flow Tips 
If you’re short on time, here’s a summarized list of things to consider to design and 
use Flows in your Salesforce org.  
 

1. For Essentials or Professional orgs, use one Flow per object per type.  

2. On Enterprise Orgs, use common judgment to determine how to group Flows.  

3. Design your Flow before you start building. 

4. Document your Flow and Flow Elements by providing meaningful descriptions. 

5. Use Fast Field Update any time you can. 

6. Watch out for governor limits. 

7. Use an asynchronous path if inserting/updating setup and non-setup objects 
on the same transaction. 

8. Use Assignment and not Update on Fast Field Updates Flow.  

9. Never hard-code IDs. 

10. Define good entry criteria, if possible. 

11. Add a bypass Flow mechanism in all record triggered Flows. 

12. Check for null or empty results in Decision elements. 

13. Control the order of execution using Flow Trigger Explorer. 

14. Avoid complex formula variables.  

15. Use Flow Action Buttons, Screen Actions, pictures, icons, HTML markups and 
any other available resource to enhance user experience on Screen Flows. 

16. Check with the customer if they have Flow guidelines in place. 

17. Follow naming guidelines and conventions to make Flows more standardized 
and readable.  

18. Use Subflows for repetitive/reusable processes. 

19. Carefully define Flow Context. 

20. Test your Flow as the running user. 

21. Have an error handling strategy to manage errors and exceptions.  

22. Have fun! 
 

17 



About Us
We help enterprises implement Salesforce and Certinia solutions while

optimizing their services business and financial operations. 

We advise, design and implement solutions for professional services automation

and help services businesses have a comprehensive view of their quote to cash

operations. We created PSQuote for professional services quoting (available on

the AppExchange) and various Accelerators to improve accuracy & save time. 

Who We Are
Our consultants and our

leadership have years of

experience in implementing and

developing cutting-edge

technology that streamlines

business processes and improves

service to customers, employees

and vendors. 

Our Mission

What We Do
Salesforce, Certinia PSA and ERP

implementations are complicated.

Without advanced planning,

designing new processes, migrating

data, and training employees—the

system won’t perform the way you

want. CLD Partners guides you

through your business

transformation, giving you the value

you expect from a big investment. 

Our Vision

What drives us? Our genuine desire

to help our clients be successful. We

know that every client’s operations

are unique. That’s why we approach

each with a fresh perspective,

without assuming we already know

the solution. We listen. And then we

develop and deliver a solutions that

fits their enterprise and processes.

You might say we’re hopelessly

devoted to delivery.

By taking everything we have

learned over the years in

traditional custom application

development, and applying our

extensive knowledge and

experience with the Salesforce

platform, we repeatedly deliver

high-quality solutions tailored to

our customers needs while

providing all of the benefits that

the cloud paradigm has to offer.

https://psquote.com/?utm_source=website&utm_medium=referral&utm_campaign=salesforce&utm_content=flowwhitepaper_link
https://www.cldpartners.com/accelerators/


We hope this document helps your
organization operate efficiently and
effectively with a well-run Salesforce
organization. 

Take time to review and manage your
Salesforce configuration to maintain data
integrity.  Don’t have time?  Not sure
where to start? 

cldpartners.com

info@cldpartners.com

T H A N K  Y O U

C O N T A C T  U S .  
W E ’ R E  H E R E  T O  H E L P .

https://cldpartners.com/?utm_source=website&utm_medium=referral&utm_campaign=salesforce&utm_content=flowwhitepaper_link
mailto:info@cldpartners.com

